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Lecture abstract

• Topics covered in this presentation

• Poles & zeros

• First-order systems

• Second-order systems

• Effect of additional poles

• Effect of zeros
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Definitions

Poles of a TF

• Values of the Laplace transform
variable, s, that cause the TF to
become infinite

• Any roots of the denominator of
the TF that are common to the
roots of the numerator

Figure: a. system showing input & output, b. pole-zero plot of 
the system; c. evolution of a system response 5

4.2 Poles, zeros, and system response



Definitions

Zeros of a TF

• Values of the Laplace transform 
variable, s, that cause the TF to 
become zero

• Any roots of the numerator of the 
TF that are common to the roots of 
the denominator

Figure: a. system showing input & output, b. pole-zero plot of 
the system; c. evolution of a system response 6

4.2 Poles, zeros, and system response



System response characteristics

Poles of a TF: 
• Generate the form of the 

natural response

Poles of an input function: 
• Generate the form of the 

forced response Figure: Effect of a real-axis 
pole upon transient response
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System response characteristics

Pole on the real axis:

• Generates an exponential response of
the form e−αt, where −α is the pole
location on the real axis. The farther to
the left a pole is on the negative real
axis, the faster the exponential
transient response will decay to zero.

Zeros and poles:

• Generate the amplitudes for both the
forced and natural responses

Figure: Effect of a real-axis 
pole upon transient response
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Intro

• 1st-order system without zeros TF

• Unit step input TF

• System response in frequency domain

• System response in time domain
Figure: 1st-order 
system; pole-plot
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Characteristics

• Time constant, 1/a :

The time for e−at to decay to 37%
of its initial value. Alternatively,
the time it takes for the step
response to rise to 63% of its
final value.

Figure: 1st-order system response to a unit step
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Characteristics

• Exponential frequency, a:

The reciprocal of the time
constant. The initial rate of
change of the exponential at t=0,
since the derivative of e−at is −a
when t = 0.

Since the pole of the TF is at −a,
the farther the pole is from the
imaginary axis, the faster the
transient response.

Figure: 1st-order system response to a unit step
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Characteristics

• Rise time, Tr:

The time for the waveform to go
from 0.1 to 0.9 of its final value.
The difference in time between
c(t) = 0.9 and c(t) = 0.1.

Figure: 1st-order system response to a unit step
14

4.3 First-order systems



Characteristics

• 2% Settling time, Ts: 

The time for the response to
reach, and stay within, 2%
(arbitrary) of its final value. The
time when c(t) = 0.98.

Figure: 1st-order system response to a unit step
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First-Order Transfer Functions via Testing
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4.3 First-order systems

• Consider a simple first-order system, G(s)=K/(s + a), whose step 
response is

• we can identify K and a from laboratory testing, so we can obtain the 
transfer function of the system.



First-Order Transfer Functions via Testing
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4.3 First-order systems

• We determine that it has the 
first-order characteristics we 
have seen thus far, such as:
• no overshoot. 

• nonzero initial slope.

• The transfer function for the 
system is

G(s) = 5.54/(s+7.7)

FIGURE: Laboratory results of a system step response test



Chapter outline

4 Time response

• 4.1 Introduction

• 4.2 Poles, zeros, and system response

• 4.3 First-order systems

• 4.4 Second-order systems: introduction

• 4.5 The general second-order system

• 4.6 Underdamped second-order systems

• 4.7 System response with additional poles

• 4.8 System response with zeros

• 4.9 Effects of nonlinearities upon time responses

• 4.10 Laplace transform solution of state equations

• 4.11 Time domain solution of state equations

18



General form

2 finite poles:

Complex pole pair determined by the
parameters a and b

No zeros
Figure: General 2nd-order system
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Overdamped response

1 pole at origin from the unit step input

System poles: 2 real at σ1, σ2

Natural response: Summation of 2 exponentials

Exponential frequency: σ1, σ2
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Underdamped response

1 pole at origin from the unit step input

System poles: 2 complex at σd ± jωd

Natural response: Damped sinusoid with an 
exponential envelope

Exponential decay frequency: σd

Frequency (rad/s): ωd
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Underdamped response characteristics

• Transient response: Exponentially decaying
amplitude generated by the real part of the
system pole times a sinusoidal waveform
generated by the imaginary part of the
system pole.

• Damped frequency of oscillation, ωd: The
imaginary part of the system poles.

• Steady state response: Generated by the
input pole located at the origin.

• Underdamped response: Approaches a
steady state value via a transient response
that is a damped oscillation.

Figure: 2nd-order step response components

generated by complex poles
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Undamped response

1 pole at origin from the unit step input

System poles: 2 imaginary at ±jω1 

Natural response: Undamped sinusoid

Frequency: ω1
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Critically damped response

1 pole at origin from the unit step input

System poles: 2 multiple real

Natural response: Summation of an exponential and
a product of time and an exponential

Exponential frequency: σ1

Note: Fastest response without overshoot
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Step response damping cases

Figure: Step responses for 2nd-order system damping cases

Overdamped

Underdamped

Undamped
Critically damped
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Specification

• Natural frequency, ωn

• The frequency of oscillation of the system without damping

• Damping ratio, ζ

• General TF

where
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Response as a 
function of ζ

Poles
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Step response
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Step response
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4.6 Underdamped second-order systems
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Responses for ζ values

• Response versus ζ plotted 
along a time axis normalized 
to ωn

• Lower ζ produce a more
oscillatory response

• ωn does not affect the nature
of the response other than
scaling it in time

Figure: 2nd-order underdamped responses for damping ratio values
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Response specifications

• Rise time, Tr: Time required for
the waveform to go from 0.1 of
the final value to 0.9 of the final
value

• Peak time, Tp: Time required to
reach the first, or maximum,
peak
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Response specifications

• Overshoot, %OS: The amount
that the waveform overshoots
the steady state, or final, value at
the peak time, expressed as a
percentage of the steady state
value

• Settling time, Ts: Time required
for the transient’s damped
oscillations to reach and stay
within ±2% of the steady state
value

35

4.6 Underdamped second-order systems



Evaluation of Tp

• Tp is found by differentiating c(t) and finding the zero crossing after
t=0, which is simplified by applying a derivative in the frequency
domain and assuming zero initial conditions.

...completing the squares in the denominator

...setting the derivative to zero
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Evaluation of %OS
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Evaluation of Ts

Find the time for which c(t) reaches and stays within ±2% of the steady
state value, cfinal, i.e., the time it takes for the amplitude of the decaying
sinusoid to reach 0.02

This equation is a conservative estimate, since we are assuming that

Settling time

Approximated by
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Evaluation of Tr

A precise analytical relationship between Tr
and ζ cannot be found. However, using a
computer, Tr can be found

1. Designate ωnt as the normalized time
variable

2. Select a value for ζ

3. Solve for the values of ωnt that yield c(t)
= 0.9 and c(t) = 0.1

4. The normalized rise time ωnTr is the
difference between those two values of
ωnt for that value of ζ

Figure: Normalized Tr vs. ζ for a

2nd-order underdamped response
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Location of poles

• Natural frequency, ωn : Radial distance
from the origin to the pole

• Damping ratio, ζ : Ratio of the
magnitude of the real part of the
system poles over the natural frequency

Figure: Pole plot for an underdamped

2nd-order system
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Location of poles

• Damped frequency of oscillation, ωd : 
Imaginary part of the system poles

• Exponential damping frequency, σd : 
Magnitude of the real part of the 
system poles

σd = ζ ωn

• Poles

S1,2 = - σd ± j ωd

Figure: Pole plot for an underdamped

2nd-order system
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Location of poles

Tp ∝ horizontal lines

Ts ∝ vertical lines

%OS ∝ radial lines
Figure: Lines of constant Tp, Ts, and %OS. 
Note: Ts2 < Ts1 , 

Tp2 < Tp1 ,
%OS1 < %OS2.
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Underdamped systems

Tp ∝ horizontal lines

Ts ∝ vertical lines

%OS ∝ radial lines

Figure: Step responses of 2nd-order systems as 

poles move:  a. with constant real part, 

b. with constant imaginary part, 

c. with constant ζ 43
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Effect on the 2nd-order system

•Dominant poles: The two complex poles that are used to
approximate a system with more than two poles as a second-order
system

• Conditions: Three pole system with complex poles and a third pole on
the real axis
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Effect on the 2nd-order system

• Step response of the system in the frequency domain

• Step response of the system in the time domain
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Effect on the 2nd-order system

3 cases for the real pole, αr

1. αr is not much greater 
than ζωn 

2. αr≫ ζωn
• Assuming exponential 

decay is negligible after 5 
time constants

• The real pole is 5× farther 
to the left than the 
dominant poles

3. αr = ∞
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• What about the magnitude of the exponential decay?

• Can it be so large that its contribution at the peak time is not
negligible?

• The residue of the third pole, in a three-pole system with dominant
second-order poles and no zeros, will actually decrease in magnitude
as the third pole is moved farther into the left half-plane.
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Effect on the 2nd-order system
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4.7 System response with additional poles

Effect on the 2nd-order system

As the nondominant pole approaches infinity; or c →∞,
A = 1; B = -1; C = -a; D = 0



Effect on the 2nd-order system
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Effect on the 2nd-order system
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Effect on the 2nd-order system
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Effect on the 2nd-order system
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Effect on the 2nd-order system

• Effects on the system response
• Residue, or amplitude

• Not the nature, e.g., exponential,
damped sinusoid, etc.

• Greater as the zero approaches
the dominant poles

• Conditions: Real axis zero added
to a two-pole system

Figure: Effect of adding a zero to a 2-pole system 55
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Effect on the 2nd-order system

Assume a group of poles and a zero far from the poles.

...partial-fraction expansion...

If the zero is far from the poles, then a≫ b and a≫ c, and

Zero looks like a simple gain factor and does not change the relative amplitudes of the components of the 
response.
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Effect on the 2nd-order system

Another view...

• Response of the system, C(s)

• System TF, T(s)

• Add a zero to the system TF, yielding, (s + a)T(s)

• Laplace transform of the response of the system

(s + a)C(s) = sC(s) + aC(s)

• Response of the system consists of 2 parts
• The derivative of the original response

• A scaled version of the original response
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Effect on the 2nd-order system

3 cases for a

• a is very large
• Response→ aC(s), a scaled version of the original response

• a is not very large
• Response has additional derivative component producing more overshoot

• a is negative – right-half plane zero
• Response has additional derivative component with an opposite sign from the

scaled response term
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Non-minimum-phase system,

• Non-minimum-phase system:

System that is causal and stable whose
inverses are causal and unstable.

• Characteristics: If the derivative term,
sC(s), is larger than the scaled
response, aC(s), the response will
initially follow the derivative in the
opposite direction from the scaled
response.
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Try at home
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